Part Number Hot Search : 
5ETTT UPG2214 B3943 042N03 B962033 CEM4201 NX6240GP D1163A
Product Description
Full Text Search
 

To Download AON7424 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  AON7424 30v n-channel mosfet general description product summary v ds i d (at v gs =10v) 40a r ds(on) (at v gs =10v) < 5.2m w r ds(on) (at v gs = 4.5v) < 7.5m w esd protected 100% uis tested 100% r g tested symbol v ds v gs i dm i as , i ar e as , e ar t j , t stg symbol t 10s steady-state steady-state r q jc maximum junction-to-case c/w c/w maximum junction-to-ambient a d 2.8 75 3.4 power dissipation b p d w power dissipation a p dsm w t a =70c 36 2 t a =25c a t a =25c i dsm a t a =70c i d 40 31 t c =25c t c =100c avalanche energy l=0.1mh c mj avalanche current c 15 continuous drain current 101 18 a 45 the AON7424 combines advanced trench mosfet technology with a low resistance package to provide extremely low r ds(on) . this device is ideal for load switch and battery protection applications. v maximum units parameter absolute maximum ratings t a =25c unless otherwise noted 30v v 20 gate-source voltage drain-source voltage 30 units maximum junction-to-ambient a c/w r q ja 30 60 40 junction and storage temperature range -55 to 150 c thermal characteristics 140 pulsed drain current c continuous drain current g parameter typ max t c =25c 3.1 14 t c =100c g ds top view 1 2 3 4 8 7 6 5 dfn 3x3 ep top view bottom view pin 1 rev 1: mar 2010 www.aosmd.com page 1 of 6
AON7424 symbol min typ max units bv dss 30 v v ds =30v, v gs =0v 1 t j =55c 5 i gss 10 m a v gs(th) gate threshold voltage 1.3 1.7 2.3 v i d(on) 140 a 4.3 5.2 t j =125c 6.6 7.9 6 7.5 m w g fs 55 s v sd 0.7 1 v i s 40 a c iss 2280 2860 3450 pf c oss 280 405 530 pf c rss 180 300 420 pf r g 0.8 1.6 2.5 w q g (10v) 40 50 60 nc q g (4.5v) 17 22 26.5 nc q gs 8 9.8 12 nc q gd 5 8.4 12 nc t d(on) 7 ns t r 12 ns t d(off) 36 ns t f 10 ns t rr 10 13 16 ns q rr 22 28 34 nc this product has been designed and qualified for th e consumer market. applications or uses as critical components in life support devices or systems are n ot authorized. aos does not assume any liability ar ising out of such applications or uses of its products. aos reserves the right to improve product design, functions and reliability without notice. body diode reverse recovery time drain-source breakdown voltage on state drain current i d =250 m a, v gs =0v v gs =10v, v ds =5v v gs =10v, i d =20a reverse transfer capacitance i f =20a, di/dt=500a/ m s v gs =0v, v ds =15v, f=1mhz switching parameters electrical characteristics (t j =25c unless otherwise noted) static parameters parameter conditions i dss m a v ds =v gs i d =250 m a v ds =0v, v gs = 20v zero gate voltage drain current gate-body leakage current forward transconductance diode forward voltage r ds(on) static drain-source on-resistance m w i s =1a,v gs =0v v ds =5v, i d =20a v gs =4.5v, i d =20a turn-off delaytime v gs =10v, v ds =15v, r l =0.75 w , r gen =3 w gate resistance v gs =0v, v ds =0v, f=1mhz turn-off fall time total gate charge v gs =10v, v ds =15v, i d =20a gate source charge gate drain charge total gate charge body diode reverse recovery charge i f =20a, di/dt=500a/ m s maximum body-diode continuous current input capacitance output capacitance turn-on delaytime dynamic parameters turn-on rise time a. the value of r q ja is measured with the device mounted on 1in 2 fr-4 board with 2oz. copper, in a still air enviro nment with t a =25c. the power dissipation p dsm is based on r q ja t 10s value and the maximum allowed junction tempera ture of 150c. the value in any given application depends on the user's specific board de sign, and the maximum temperature of 150c may be u sed if the pcb allows it. b. the power dissipation p d is based on t j(max) =150c, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsi nking is used. c. repetitive rating, pulse width limited by juncti on temperature t j(max) =150c. ratings are based on low frequency and duty cycles to keep initial t j =25c. d. the r q ja is the sum of the thermal impedence from junction to case r q jc and case to ambient. e. the static characteristics in figures 1 to 6 are obtained using <300 m s pulses, duty cycle 0.5% max. f. these curves are based on the junction-to-case t hermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of t j(max) =150c. the soa curve provides a single pulse ratin g. g. the maximum current rating is package limited. h. these tests are performed with the device mounte d on 1 in 2 fr-4 board with 2oz. copper, in a still air enviro nment with t a =25c. rev 1: mar 2010 www.aosmd.com page 2 of 6
AON7424 typical electrical and thermal characteristics 40 0 20 40 60 80 0.5 1 1.5 2 2.5 3 3.5 4 4.5 v gs (volts) figure 2: transfer characteristics (note e) i d (a) 0 2 4 6 8 10 0 5 10 15 20 25 30 i d (a) figure 3: on-resistance vs. drain current and gate voltage (note e) r ds(on) (m w ww w ) 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00 1.0e+01 1.0e+02 0.0 0.2 0.4 0.6 0.8 1.0 1.2 v sd (volts) figure 6: body-diode characteristics (note e) i s (a) 25c 125c 0.8 1 1.2 1.4 1.6 1.8 0 25 50 75 100 125 150 175 temperature (c) figure 4: on-resistance vs. junction temperature (note e) normalized on-resistance v gs =4.5v i d =20a v gs =10v i d =20a 0 3 6 9 12 15 18 2 4 6 8 10 v gs (volts) figure 5: on-resistance vs. gate-source voltage (note e) r ds(on) (m w ww w ) 25c 125c v ds =5v v gs =4.5v v gs =10v i d =20a 25c 125c 0 20 40 60 80 100 0 1 2 3 4 5 v ds (volts) fig 1: on-region characteristics (note e) i d (a) v gs =3v 3.5v 10v 4v 4.5v rev 1: mar 2010 www.aosmd.com page 3 of 6
AON7424 typical electrical and thermal characteristics 17 52 10 0 18 40 0 2 4 6 8 10 0 10 20 30 40 50 q g (nc) figure 7: gate-charge characteristics v gs (volts) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 5 10 15 20 25 30 v ds (volts) figure 8: capacitance characteristics capacitance (pf) c iss 0 40 80 120 160 200 0.0001 0.001 0.01 0.1 1 10 pulse width (s) figure 10: single pulse power rating junction-to- case (note f) power (w) 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10 100 pulse width (s) figure 11: normalized maximum transient thermal imp edance (note f) z q qq q jc normalized transient thermal resistance c oss c rss v ds =15v i d =20a single pulse d=t on /t t j,pk =t c +p dm .z q jc .r q jc t on t p d in descending order d=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse t j(max) =150c t c =25c 10 m s 0.01 0.1 1 10 100 1000 0.01 0.1 1 10 100 v ds (volts) i d (amps) figure 9: maximum forward biased safe operating area (note f) 10 m s 10ms 1ms dc r ds(on) limited t j(max) =150c t c =25c 100 m s r q jc =3.4c/w rev 1: mar 2010 www.aosmd.com page 4 of 6
AON7424 typical electrical and thermal characteristics 17 52 10 0 18 40 0.001 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 pulse width (s) figure 16: normalized maximum transient thermal imp edance (note h) z q qq q ja normalized transient thermal resistance single pulse d=t on /t t j,pk =t a +p dm .z q ja .r q ja t on t p d in descending order d=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0 10 20 30 40 0 25 50 75 100 125 150 t case (c) figure 13: power de-rating (note f) power dissipation (w) 0 10 20 30 40 50 0 25 50 75 100 125 150 t case (c) figure 14: current de-rating (note f) current rating i d (a) 1 10 100 1000 10000 0.00001 0.001 0.1 10 1000 pulse width (s) figure 15: single pulse power rating junction-to- ambient (note h) power (w) t a =25c r q ja =75c/w 10 100 1000 1 10 100 1000 time in avalanche, t a ( m mm m s) figure 12: single pulse avalanche capability (note c) i ar (a) peak avalanche current t a =25c t a =150c t a =100c t a =125c rev 1: mar 2010 www.aosmd.com page 5 of 6
AON7424 - + vdc ig vds dut - + vdc vgs vgs 10v qg qgs qgd charge gate charge test circuit & waveform - + vdc dut vdd vgs vds vgs rl rg vgs vds 10% 90% resistive switching test circuit & waveforms t t r d(on) t on t d(off) t f t off vdd vgs id vgs rg dut - + vdc l vgs vds id vgs bv i unclamped inductive switching (uis) test circuit & waveforms ig vgs - + vdc dut l vds vgs vds isd isd diode recovery test circuit & waveforms vds - vds + i f ar dss 2 e = 1/2 li di/dt i rm rr vdd vdd q = - idt ar ar t rr rev 1: mar 2010 www.aosmd.com page 6 of 6


▲Up To Search▲   

 
Price & Availability of AON7424

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X